STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lmo1874Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (314 aa)    
Predicted Functional Partners:
lmo1873
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
 
 
 0.999
lmo2544
Similar to thymidine kinase.
  
 
 0.988
lmo1691
Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA.
  
 0.972
lmo2693
Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family.
  
 
 0.970
lmo1348
Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine.
  
 
 0.964
lmo1678
Lmo1678 protein; Similar to 5-methyltetrahydrofolate-homocysteine methyltransferase (metH).
  
 
 0.947
folC
FolC protein; Similar to Folyl-polyglutamate synthetase; Belongs to the folylpolyglutamate synthase family.
     
 0.945
comEB
ComEB protein; Similar to B. subtilis ComEB protein.
  
 
 0.942
folD
Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
  
 
 0.939
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 
 0.939
Your Current Organism:
Listeria monocytogenes
NCBI taxonomy Id: 169963
Other names: L. monocytogenes EGD-e, Listeria monocytogenes ATCC BAA-679, Listeria monocytogenes EGD-e, Listeria monocytogenes EGDe, Listeria monocytogenes str. EGD-e, Listeria monocytogenes strain EGD-e
Server load: medium (70%) [HD]