STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
acpPAcyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (94 aa)    
Predicted Functional Partners:
fabD
Malonyl coA-acyl carrier protein transacylase; Similar to Q9CJS7 FabD from Pasteurella multocida (312 aa). FASTA: opt: 984 Z-score: 1099.0 E(): 2.3e-53 Smith-Waterman score: 984;50.163 identity in 307 aa overlap ORF ftt1374.
 
 0.999
nuoC
NADH dehydrogenase I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
   
 0.997
nuoB
NADH dehydrogenase I, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 0.996
fabF
3-oxoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP.
 
 
 0.996
nuoD
NADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 0.994
nuoA
NADH dehydrogenase I, A subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
   
  0.993
nuoH
NADH dehydrogenase I, H subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
  0.992
nuoM
Similar to Q83BR7 NADH dehydrogenase I, M subunit from Coxiella burnetii (506 aa). FASTA: opt: 1099 Z-score: 1147.9 E(): 4.8e-56 Smith-Waterman score: 1659; 47.228 identity in 523 aa overlap.
   
  0.992
nuoN
NADH dehydrogenase I, N subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
   
 0.992
nuoE
Similar to Q83BQ9 NADH dehydrogenase I, E subunit from Xanthomonas campestris (174 aa). FASTA: opt: 528 Z-score: 689.7 E(): 1.6e-30 Smith-Waterman score: 528; 52.318 identity in 151 aa overlap.
  
 0.989
Your Current Organism:
Francisella tularensis SCHUS4
NCBI taxonomy Id: 177416
Other names: F. tularensis subsp. tularensis SCHU S4, Francisella tularensis Biovar A str. SCHU S4, Francisella tularensis Biovar A str. Schu 4, Francisella tularensis subsp. tularensis SCHU S4, Francisella tularensis subsp. tularensis Schu 4, Francisella tularensis subsp. tularensis str. SCHU S4, Francisella tularensis subsp. tularensis strain SCHU S4
Server load: medium (66%) [HD]