STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
proAGamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (426 aa)    
Predicted Functional Partners:
proB
Glutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate.
 
 0.999
purQ
Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...]
  
 
 0.943
glnA
Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.928
proC
Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline.
 
 
 0.880
atpA
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
    
 0.870
AIB12954.1
Pyridine nucleotide-disulfide oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.853
nadD
Nicotinate-nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD).
  
  
 0.815
puuA
Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family.
    
 0.753
sfsA
XRE family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SfsA family.
    
   0.740
AIB12557.1
Response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
   0.740
Your Current Organism:
Azospirillum brasilense
NCBI taxonomy Id: 192
Other names: A. brasilense, ATCC 29145, Azospirillum brasiliense, LMG 13127, LMG:13127, NBRC 102289, NRRL B-14647, Roseomonas fauriae, Spirillum lipoferum, bacterium ASAZOES-148, strain sp. 7
Server load: low (28%) [HD]