node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
aroC | trpA | ABAZ39_04370 | ABAZ39_00745 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. | 0.835 |
aroC | trpB | ABAZ39_04370 | ABAZ39_00740 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. | 0.657 |
aroC | trpC | ABAZ39_04370 | ABAZ39_08105 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. | 0.758 |
aroC | trpD | ABAZ39_04370 | ABAZ39_08100 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). | 0.831 |
aroC | trpE | ABAZ39_04370 | ABAZ39_08070 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Anthranilate synthase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...] | 0.981 |
aroC | trpE(G) | ABAZ39_04370 | ABAZ39_09145 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.985 |
aroC | trpF | ABAZ39_04370 | ABAZ39_01245 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | N-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. | 0.643 |
aroC | trpG | ABAZ39_04370 | ABAZ39_08095 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.969 |
moaC | moeA2 | ABAZ39_08115 | ABAZ39_08120 | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | Molybdenum cofactor biosynthesis protein MoaA; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. | 0.991 |
moaC | trpC | ABAZ39_08115 | ABAZ39_08105 | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. | 0.948 |
moaC | trpD | ABAZ39_08115 | ABAZ39_08100 | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). | 0.849 |
moaC | trpE(G) | ABAZ39_08115 | ABAZ39_09145 | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.658 |
moaC | trpF | ABAZ39_08115 | ABAZ39_01245 | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | N-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. | 0.400 |
moaC | trpG | ABAZ39_08115 | ABAZ39_08095 | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.791 |
moeA2 | moaC | ABAZ39_08120 | ABAZ39_08115 | Molybdenum cofactor biosynthesis protein MoaA; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. | Molybdenum cofactor biosynthesis protein MoaC; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. | 0.991 |
moeA2 | trpC | ABAZ39_08120 | ABAZ39_08105 | Molybdenum cofactor biosynthesis protein MoaA; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. | Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. | 0.781 |
moeA2 | trpD | ABAZ39_08120 | ABAZ39_08100 | Molybdenum cofactor biosynthesis protein MoaA; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). | 0.777 |
moeA2 | trpG | ABAZ39_08120 | ABAZ39_08095 | Molybdenum cofactor biosynthesis protein MoaA; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. | Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.764 |
trpA | aroC | ABAZ39_00745 | ABAZ39_04370 | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | 0.835 |
trpA | trpB | ABAZ39_00745 | ABAZ39_00740 | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. | 0.999 |