STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prpECatalyzes the formation of propionyl-CoA using propionate as a substrate; PrpE from Ralstonia solanacearum can produce acetyl-, propionyl-, butyryl- and acrylyl-coenzyme A, and Salmonella enterica produces propionyl- and butyryl-coenzyme A; not expressed in Escherichia coli when grown on propionate/minimal media; ATP-dependent; Derived by automated computational analysis using gene prediction method: Protein Homology. (640 aa)    
Predicted Functional Partners:
pta2
Bifunctional enoyl-CoA hydratase/phosphate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.967
ackA2
Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family.
   
 
 0.955
acsA
acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family.
  
  
 
0.943
gltA
Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family.
  
 0.938
maeB
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.889
AIB12972.1
2-oxoglutarate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.867
AIB13178.1
GCN5 family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.865
citE
malyl-CoA thiolesterase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HpcH/HpaI aldolase family.
   
 0.858
mls
Malate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the malate synthase family.
   
 0.839
gabD
Succinate-semialdehyde dehydrogenase; Catalyzes the formation of succinate from succinate semialdehyde; NADP dependent; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.839
Your Current Organism:
Azospirillum brasilense
NCBI taxonomy Id: 192
Other names: A. brasilense, ATCC 29145, Azospirillum brasiliense, LMG 13127, LMG:13127, NBRC 102289, NRRL B-14647, Roseomonas fauriae, Spirillum lipoferum, bacterium ASAZOES-148, strain sp. 7
Server load: low (30%) [HD]