STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
leuSleucyl-tRNA synthetase; Identified by similarity to SP:P36430; match to protein family HMM PF00133; match to protein family HMM PF08264; match to protein family HMM PF09334; match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family. (816 aa)    
Predicted Functional Partners:
pheT
phenylalanyl-tRNA synthetase, beta subunit; Identified by similarity to SP:P17922; match to protein family HMM PF01588; match to protein family HMM PF03147; match to protein family HMM PF03483; match to protein family HMM PF03484; match to protein family HMM TIGR00472; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
  
  
 0.996
topB
DNA topoisomerase III; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA su [...]
   
 
 0.990
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
   
 
 0.990
metG-2
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
 
0.974
ileS
isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily.
  
0.877
nifJ
Pyruvate-flavodoxin oxidoreductase; Identified by similarity to SP:P19543; match to protein family HMM PF00037; match to protein family HMM PF01558; match to protein family HMM PF01855; match to protein family HMM TIGR02176.
   
   0.876
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...]
 
 0.851
argS
arginyl-tRNA synthetase; Identified by similarity to SP:P11875; match to protein family HMM PF00750; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM TIGR00456.
  
 0.846
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily.
   
 0.843
valS
valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily.
  
 
0.835
Your Current Organism:
Clostridium perfringens ATCC 13124
NCBI taxonomy Id: 195103
Other names: C. perfringens ATCC 13124, Clostridium perfringens str. ATCC 13124, Clostridium perfringens strain ATCC 13124
Server load: low (28%) [HD]