STRINGSTRING
Noca_1756 protein (Nocardioides sp. JS614) - STRING interaction network
"Noca_1756" - Hypothetical protein in Nocardioides sp. JS614
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Noca_1756Hypothetical protein (77 aa)    
Predicted Functional Partners:
atpB
ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane (276 aa)
              0.840
Noca_1755
Putative ATP synthase protein I (157 aa)
              0.752
atpE
H+-transporting two-sector ATPase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (69 aa)
              0.610
atpH
ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (275 aa)
              0.520
atpF
ATP synthase F0 subunit B; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (189 aa)
              0.520
Noca_1754
Glycosyl transferase family protein (394 aa)
              0.445
Noca_1753
Translation factor SUA5 (219 aa)
              0.435
atpC
F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane (133 aa)
              0.424
atpD
F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits (484 aa)
              0.424
atpG
ATP synthase F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex (303 aa)
              0.424
Your Current Organism:
Nocardioides sp. JS614
NCBI taxonomy Id: 196162
Other names: N. sp. JS614, Nocardioides, Nocardioides JS614, Nocardioides sp. JS614
Server load: low (10%) [HD]