STRINGSTRING
lepA protein (Nocardioides sp. JS614) - STRING interaction network
"lepA" - GTP-binding protein LepA in Nocardioides sp. JS614
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (635 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA (357 aa)
 
   
  0.898
Noca_1893
MOSC domain-containing protein (218 aa)
              0.876
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (147 aa)
 
 
  0.873
Noca_1892
Aminoglycoside/hydroxyurea antibiotic resistance kinase (303 aa)
              0.859
obg
GTPase ObgE; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control (516 aa)
   
   
  0.829
aspS
aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps- aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) (590 aa)
 
   
  0.821
rpsI
30S ribosomal protein S9 (166 aa)
 
   
  0.817
pheS
phenylalanyl-tRNA synthetase subunit alpha (368 aa)
   
   
  0.811
alaS
alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction- alanine is first activated by ATP to form Ala- AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain (896 aa)
   
   
  0.784
der
GTP-binding protein EngA; GTPase that plays an essential role in the late steps of ribosome biogenesis (461 aa)
 
 
  0.775
Your Current Organism:
Nocardioides sp. JS614
NCBI taxonomy Id: 196162
Other names: N. sp. JS614, Nocardioides, Nocardioides JS614, Nocardioides sp. JS614
Server load: low (9%) [HD]