STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
chlBProtochlorophyllide reductase subunit; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex. (508 aa)    
Predicted Functional Partners:
chlN
Protochlorophillide reductase subunit; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex.
 
 0.999
chlL
Light-independent protochlorophyllide reductase iron protein subunit; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The L component serves as a unique electron donor to the NB-component of the complex, and binds Mg-ATP.
 
 0.999
chlG
Chlorophyll a synthase; ORF_ID:tll1539.
  
 
 0.981
por
Light-dependent NADPH-protochlorophyllide oxidoreductase; Phototransformation of protochlorophyllide (Pchlide) to chlorophyllide (Chlide).
     
 0.979
tll1845
ORF_ID:tll1845; hypothetical protein.
 
 
  0.973
ycf59
Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase 1; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME); Belongs to the AcsF family.
 
 
 0.933
tlr1722
Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase 2; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME); Belongs to the AcsF family.
 
 
 0.926
chlM
Mg-protoporphyrin IX methyl transferase; ORF_ID:tll0451.
 
  
 0.807
tlr0140
ORF_ID:tlr0140; similar to light-harvesting 1 (B870) complex assembly protein PucC.
 
    0.803
chlH
Magnesium-protoporphyrin methyltransferase; ORF_ID:tlr0271.
 
  
 0.803
Your Current Organism:
Thermosynechococcus elongatus
NCBI taxonomy Id: 197221
Other names: T. elongatus BP-1, Thermosynechococcus elongatus BP-1, Thermosynechococcus elongatus IAM M-273, Thermosynechococcus elongatus NIES-2133, Thermosynechococcus elongatus str. BP-1, Thermosynechococcus elongatus strain BP-1
Server load: low (28%) [HD]