STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (325 aa)    
Predicted Functional Partners:
rpsK
30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
 
 0.998
rpsM
30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family.
 
 0.998
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 0.998
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 0.998
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 0.997
rpsD
30S ribosomal subunit protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
 
 
 0.997
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
 
 
 0.996
rpsH
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family.
 
 
 0.995
rplB
50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family.
 
 
 0.994
rpsB
30S ribosomal subunit protein S2; Function of homologous gene experimentally demonstrated in an other organism; factor; Belongs to the universal ribosomal protein uS2 family.
 
 
 0.993
Your Current Organism:
Herminiimonas arsenicoxydans
NCBI taxonomy Id: 204773
Other names: CCM 7303, DSM 17148, H. arsenicoxydans, Herminiimonas arsenicoxydans Muller et al. 2006, LMG 22961, LMG:22961, strain ULPAs1
Server load: low (40%) [HD]