STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
algAPhosphomannose isomerase / guanosine 5'-diphospho-D-mannose pyrophosphorylase; Produces a precursor for alginate polymerization. The alginate layer provides a protective barrier against host immune defenses and antibiotics; Belongs to the mannose-6-phosphate isomerase type 2 family. (481 aa)    
Predicted Functional Partners:
algD
GDP-mannose 6-dehydrogenase AlgD; Catalyzes the oxidation of guanosine diphospho-D-mannose (GDP-D-mannose) to GDP-D-mannuronic acid, a precursor for alginate polymerization. The alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics.
 
 
 0.999
algC
Phosphomannomutase AlgC; Highly reversible phosphoryltransferase. The phosphomannomutase activity produces a precursor for alginate polymerization, the alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics. Also involved in core lipopolysaccaride (LPS) biosynthesis due to its phosphoglucomutase activity. Essential for rhamnolipid production, an exoproduct correlated with pathogenicity. Required for biofilm production. The reaction proceeds via 2 processive phosphoryl transferase reactions; first from enzyme-phospho-Ser-1 [...]
 
 0.996
algJ
Alginate o-acetyltransferase AlgJ; Together with AlgI and AlgF, forms an inner membrane complex which probably interacts with the alginate polymerization-transport complex and adds acetyl groups at the O-2 and O-3 positions of mannuronate residues. Acetylation of alginate is important for the architecture of biofilms and increases resistance to opsonic killing in the host.
  
  
 0.990
algL
Poly(beta-d-mannuronate) lyase precursor AlgL; Catalyzes the depolymerization of alginate by cleaving the beta-1,4 glycosidic bond between two adjacent sugar residues via a beta-elimination mechanism. May serve to degrade mislocalized alginate that is trapped in the periplasmic space. Acts preferentially on non-acetylated alginate or its precursor mannuronan. Is able to catalyze cleavage adjacent to either mannuronate or guluronate residues in alginate. Exhaustive digestion of alginate by AlgL generates dimeric and trimeric products. In addition to its enzymatic function, AlgL appears [...]
  
  
 0.988
alg44
Alginate biosynthesis protein Alg44; Required for alginate biosynthesis. Belongs to the Alg44 family.
  
  
 0.987
algE
Alginate production outer membrane protein AlgE precursor; Has non-porin-like, channel-forming properties and probably functions as an alginate permeability pore.
  
  
 0.987
algG
Alginate-c5-mannuronan-epimerase AlgG; Catalyzes the epimerization of beta-D-mannuronate to alpha-L- guluronate during the synthesis of the linear polysaccharide alginate. In addition, is part of a periplasmic protein complex that protects alginate from degradation by AlgL by channeling the newly formed alginate polymer through a scaffold that transfers the alginate polymer through the periplasmic space to the outer membrane secretin AlgE.
  
  
 0.987
algF
Alginate o-acetyltransferase AlgF; Together with AlgI and AlgJ, forms an inner membrane complex which probably interacts with the alginate polymerization-transport complex and adds acetyl groups at the O-2 and O-3 positions of mannuronate residues. Acetylation of alginate is important for the architecture of biofilms and increases resistance to opsonic killing in the host.
  
  
 0.987
alg8
Alginate biosynthesis protein Alg8; Processive enzyme that polymerizes GDP-mannuronic acid. Belongs to the glycosyltransferase 2 family.
  
  
 0.985
algI
Alginate o-acetyltransferase AlgI; Together with AlgJ and AlgF, forms an inner membrane complex which probably interacts with the alginate polymerization-transport complex and adds acetyl groups at the O-2 and O-3 positions of mannuronate residues. Acetylation of alginate is important for the architecture of biofilms and increases resistance to opsonic killing in the host.
  
  
 0.984
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: medium (44%) [HD]