STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OB0093ATP-dependent Clp protease (ATP-binding subunit); Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the [...] (809 aa)    
Predicted Functional Partners:
dnaK
Class I heat shock protein 70 (DnaK protein, chaperonin); Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.940
OB2456
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. ClpXP is involved in the complete degradation of the Site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor (By similarity); Belongs to the peptidase S14 family.
 
 
 0.914
OB0657
Hypothetical protein; CDS_ID OB0657.
  
 
 0.899
OB3094
Hypothetical protein; CDS_ID OB3094.
  
 
 0.899
tepA
Translocation enhancing protein; CDS_ID OB1612.
  
 
 0.890
grpE
Heat shock protein (activation of DnaK); Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Severa [...]
  
 
 0.889
dnaJ
Heat shock protein (activation of DnaK); Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interaction [...]
  
 
 0.885
OB0092
Creatine kinase; Catalyzes the specific phosphorylation of arginine residues in a large number of proteins. Is part of the bacterial stress response system. Protein arginine phosphorylation has a physiologically important role and is involved in the regulation of many critical cellular processes, such as protein homeostasis, motility, competence, and stringent and stress responses, by regulating gene expression and protein activity.
 
 
 0.875
OB0091
Hypothetical conserved protein; CDS_ID OB0091.
 
  
 0.854
OB3158
Class III heat shock protein (chaperonin); Molecular chaperone. Has ATPase activity.
  
 
 0.845
Your Current Organism:
Oceanobacillus iheyensis
NCBI taxonomy Id: 221109
Other names: O. iheyensis HTE831, Oceanobacillus iheyensis HTE831, Oceanobacillus iheyensis str. HTE831, Oceanobacillus iheyensis strain HTE831, marine firmicute HTE831
Server load: medium (68%) [HD]