STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mmgF2-methylisocitrate lyase; Involved in the methylcitric acid cycle. Catalyzes the cleavage of 2-methylisocitrate to yield pyruvate and succinate. (301 aa)    
Predicted Functional Partners:
mmgE
2-methylcitrate dehydratase; Involved in both the tricarboxylic acid (TCA) and methylcitric acid cycles. Has both 2-methylcitrate dehydratase and citrate dehydratase activities. Catalyzes the dehydration of 2-methylcitrate (2-MC) to yield 2-methyl-cis-aconitate, and the dehydration of citrate to yield cis-aconitate. Cannot form isocitrate. Uses either (2S,3R)- or (2R,3S)-2-methylcitrate.
 
  
 0.999
mmgD
2-methylcitrate synthase/citrate synthase III; Involved in both the tricarboxylic acid (TCA) and methylcitric acid cycles. Has both 2-methylcitrate synthase and citrate synthase activities. Catalyzes the condensation of propionyl-CoA and oxaloacetate to yield 2-methylcitrate (2-MC) and CoA, and the condensation of acetyl-CoA and oxaloacetate to yield citrate and CoA. Has 2.3-fold higher activity as a 2-methylcitrate synthase. Catalyzes the formation of either (2S,3R)- or (2R,3S)-2-methylcitrate.
 
 0.989
sucD
succinyl-CoA synthetase (alpha subunit); Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit.
    
 0.945
sucC
succinyl-CoA synthetase (beta subunit); Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
   
 
 0.944
mmgA
Degradative acetoacetyl-CoA thiolase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the thiolase-like superfamily. Thiolase family.
  
 
 0.935
citZ
Citrate synthase II; Might regulate the synthesis and function of enzymes involved in later enzymatic steps of Krebs cycle. Loss in activity results in sporulation defect; Belongs to the citrate synthase family.
 
 0.927
acsA
acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA (By similarity). Has a role in growth and sporulation on acetate.
  
 
 0.913
ytcI
Putative acyl-coenzyme A synthetase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the ATP-dependent AMP-binding enzyme family.
  
 
 0.912
citA
Citrate synthase I; Might regulate the synthesis and function of enzymes involved in later enzymatic steps of Krebs cycle. Loss in activity results in sporulation defect; Belongs to the citrate synthase family.
 
 0.897
yngHA
Biotin carboxylase/methylcrotonoyl-CoA carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 0.856
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: high (86%) [HD]