STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
yydKPutative transcriptional regulator (GntR family); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pr: putative regulator. (236 aa)    
Predicted Functional Partners:
gntR
Transcriptional regulator (GntR family); Transcriptional repressor of the gluconate operon (gntRKPZ), which encodes the proteins for gluconate utilization. Represses mRNA synthesis by binding to the gnt operator; the binding is suppressed by gluconate or glucono-delta-lactone.
  
  
 0.872
fadR
Transcriptional regulator of fatty acids degradation (TetR/AcrR family); Transcriptional regulator in fatty acid degradation. Represses transcription of genes required for fatty acid transport and beta-oxidation, including acdA, fadA, fadB, fadE, fadF, fadG, fadH, fadM, fadN, lcfA and lcfB. Binding of FadR to DNA is specifically inhibited by long chain fatty acyl-CoA compounds of 14-20 carbon atoms in length.
   
  
 0.847
ymfC
Putative transcriptional regulator (GntR family); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pr: putative regulator.
  
     0.740
yyzN
Hypothetical protein; Evidence 5: No homology to any previously reported sequences.
  
    0.714
gamP
Phosphotransferase system (PTS) glucosamine-specific enzyme IICBA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system may be involved in glucosamine transport.
  
  
 0.597
nagP
Phosphotransferase system (PTS) N-acetylglucosamine-specific enzyme IICB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylglucosamine transport (By similarity).
  
  
 0.571
nagR
Transcriptional regulator (GntR family); Main transcriptional repressor of genes involved in N- acetylglucosamine (GlcNAc) transport and utilization. Represses the expression of the nagAB and nagP operons by binding directly within their upstream regions. Binds to the DNA consensus sequence 5'-ATTGGTATAGACAACT-3'. Also acts as a weak repressor of mapB expression.
  
   
0.506
nagA
N-acetylglucosamine-6-phosphate deacetylase; Involved in the first committed step in the biosynthesis of amino-sugar-nucleotides. Catalyzes the hydrolysis of the N-acetyl group of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to yield glucosamine 6- phosphate and acetate; Belongs to the metallo-dependent hydrolases superfamily. NagA family.
  
  
 0.497
ycbG
Transcriptional regulator (GntR family); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type r: regulator.
  
    0.490
ydeC
Putative transcriptional regulator (AraC/XylS family); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative regulator.
  
  
 0.486
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (32%) [HD]