STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ctaDCytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (541 aa)    
Predicted Functional Partners:
coxB
Cytochrome C oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 0.999
coxC
Cytochrome B562; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.998
fbcH
Cytochrome C; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. c1 functions as an electron donor to cytochrome c.
 
 0.994
cyoC
Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.989
cyoC-2
Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.988
coxP
Bb3-type cytochrome oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.984
ctaB
Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group.
 
 
 0.981
coxM
Cytochrome C oxidase; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1.
 
 0.981
norE
Heme/copper-type cytochrome/quinol oxidase, subunit 3; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.976
petA
Ubiquinol-cytochrome C reductase; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
  
 0.965
Your Current Organism:
Bradyrhizobium diazoefficiens
NCBI taxonomy Id: 224911
Other names: B. diazoefficiens USDA 110, Bradyrhizobium diazoefficiens USDA 110, Bradyrhizobium japonicum USDA 110
Server load: low (26%) [HD]