STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CF15_02625Hypothetical protein; Catalyzes the first step of diphthamide biosynthesis, i.e. the transfer of the 3-amino-3-carboxypropyl group from S-adenosyl-L- methionine (SAM) to the C2 position of the imidazole ring of the target histidine residue in translation elongation factor 2 (EF-2). Belongs to the DPH1/DPH2 family. (352 aa)    
Predicted Functional Partners:
fusA
Elongation factor EF-2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
    
 0.963
CF15_02620
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.896
csl4
Hypothetical protein; Non-catalytic component of the exosome, which is a complex involved in RNA degradation. Increases the RNA binding and the efficiency of RNA degradation. Helpful for the interaction of the exosome with A-poor RNAs.
  
    0.882
CF15_02610
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.839
rpoL
DNA-directed RNA polymerase subunit L; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal RpoL/eukaryotic RPB11/RPC19 RNA polymerase subunit family.
  
    0.820
rpl10e
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uL16 family.
 
 
   0.819
dphB
Diphthine synthase; S-adenosyl-L-methionine-dependent methyltransferase that catalyzes the trimethylation of the amino group of the modified target histidine residue in translation elongation factor 2 (EF-2), to form an intermediate called diphthine. The three successive methylation reactions represent the second step of diphthamide biosynthesis.
  
 
 0.813
CF15_02600
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.656
CF15_05055
tRNA 2'-O-methylase; Specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of cytidine at position 56 in tRNAs; Belongs to the aTrm56 family.
  
     0.619
priS
Hypothetical protein; Catalytic subunit of DNA primase, an RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. The small subunit contains the primase catalytic core and has DNA synthesis activity on its own. Binding to the large subunit stabilizes and modulates the activity, increasing the rate of DNA synthesis while decreasing the length of the DNA fragments, and conferring RNA synthesis capability. The DNA polymerase activity may enable DNA primase to also catalyze primer extension after primer synthesis. May a [...]
 
   
 0.598
Your Current Organism:
Pyrodictium occultum
NCBI taxonomy Id: 2309
Other names: DSM 2709, JCM 9393, NBRC 100438, P. occultum, strain PL-19
Server load: low (28%) [HD]