STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvPGlycine dehydrogenase (decarboxylating) alpha subunit; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (974 aa)    
Predicted Functional Partners:
gcvT
Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine.
 0.999
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
 0.999
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 
 0.995
Ava_1927
Dihydrolipoamide dehydrogenase.
 
 
 0.954
purD
Phosphoribosylamine--glycine ligase; Belongs to the GARS family.
  
  
 0.950
Ava_4955
L-threonine aldolase; Catalyzes the cleavage of L-allo-threonine and L-threonine to glycine and acetaldehyde.
    
 0.941
Ava_5058
Alanine-glyoxylate aminotransferase apoenzyme.
  
 
 0.934
purQ
Phosphoribosylformylglycinamidine synthase subunit I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to [...]
  
 
  0.898
Ava_1783
succinyl-CoA synthetase (ADP-forming) beta subunit.
  
  
 0.890
Ava_1204
Glutamate dehydrogenase (NADP); Belongs to the Glu/Leu/Phe/Val dehydrogenases family.
   
 0.872
Your Current Organism:
Trichormus variabilis
NCBI taxonomy Id: 240292
Other names: Anabaena flos-aquae A-37, Anabaena flos-aquae UTCC 67, Anabaena sp. CCALA 007, Anabaena sp. PCC 7937, Anabaena variabilis ATCC 29413, Anabaena variabilis IAM M-204, Anabaena variabilis NIES-2095, Anabaena variabilis UTCC 105, Nostoc sp. PCC 7937, T. variabilis ATCC 29413, Trichormus variabilis ATCC 29413
Server load: medium (50%) [HD]