STRINGSTRING
mutL protein (Porphyromonas gingivalis W83) - STRING interaction network
"mutL" - DNA mismatch repair protein MutL in Porphyromonas gingivalis W83
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mutLDNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (618 aa)    
Predicted Functional Partners:
mutS
DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (891 aa)
 
  0.999
polA
DNA polymerase type I (926 aa)
   
  0.972
dnaN
DNA polymerase III subunit beta; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (377 aa)
   
  0.931
uvrA-1
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (967 aa)
   
 
  0.913
PG_1038
UvrD/PcrA/Rep family ATP-dependent DNA helicase (765 aa)
   
 
  0.905
recA
recA protein; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (340 aa)
   
  0.896
uvrA-2
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (952 aa)
   
 
  0.886
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (599 aa)
       
  0.883
PG_0414
Hypothetical protein (626 aa)
              0.874
PG_0413
Hypothetical protein (114 aa)
              0.862
Your Current Organism:
Porphyromonas gingivalis W83
NCBI taxonomy Id: 242619
Other names: P. gingivalis W83, Porphyromonas gingivalis W83, Porphyromonas gingivalis str. W83, Porphyromonas gingivalis strain W83
Server load: low (7%) [HD]