STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
dinPDNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII (403 aa)    
Predicted Functional Partners:
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity
LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair
Protein RecA; Required for homologous recombination (HR) and the bypass of mutagenic DNA lesions (double strand breaks, DSB) by the SOS response. Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single- stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. Numerous X-ray crystals have been resolved under different conditions which indicate the flexibility of the protein, essential to its function. Gln-196 contributes to this plasticity by acting as a switch residue, which transmits the e [...]
HTH-type transcriptional regulator EthR; Involved in the repression of teh monooxygenase EthA which is responsible of the formation of the active metabolite of ethionamide (ETH)
Error-prone DNA polymerase; DNA polymerase involved in damage-induced mutagenesis and translesion synthesis (TLS). It is not the major replicative DNA polymerase
annotation not available
annotation not available
annotation not available
UvrABC system protein A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate
Multifunctional non-homologous end joining protein LigD; With Ku forms a non-homologous end joining (NHEJ) repair enzyme which repairs blunt-end and 5'-overhang DNA double strand breaks (DSB) with about 50% fidelity, and DSB with non- complementary 3' ends. Plays a partial role in NHEJ during 3'- overhang repair. NHEJ repairs DSB with blunt ends and 5' overhangs with a high level of nucleotide insertion/deletion, without a need for microhomology. Acts as a DNA ligase on singly nicked dsDNA, as a DNA-directed DNA polymerase on 5' overhangs, and adds non- templated nucleotides to 3' over [...]
Your Current Organism:
Mycobacterium smegmatis MC2155
NCBI taxonomy Id: 246196
Other names: M. smegmatis str. MC2 155, Mycobacterium smegmatis MC2 155, Mycobacterium smegmatis MC2155, Mycobacterium smegmatis str. MC2 155, Mycobacterium smegmatis strain MC2 155
Server load: low (13%) [HD]