STRINGSTRING
gll1821 protein (Gloeobacter violaceus) - STRING interaction network
"gll1821" - Endonuclease III in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gll1821Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity (220 aa)    
Predicted Functional Partners:
glr0140
Exodeoxyribonuclease III (258 aa)
 
 
  0.989
nth
Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N- glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3’ to the AP site by a beta-elimination, leaving a 3’-terminal unsaturated sugar and a product with a terminal 5’-phosphate (232 aa)
   
   
 
0.833
polA
DNA polymerase I (938 aa)
   
 
  0.712
glr1822
MarR family transcriptional regulator (155 aa)
              0.627
metS
methionyl-tRNA synthetase (516 aa)
 
     
  0.540
cphA
Cyanophycin synthetase (876 aa)
         
  0.532
recA
Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (369 aa)
   
 
  0.519
glr3609
AraC family transcriptional regulator (535 aa)
   
 
  0.516
gll0777
Hypothetical protein (196 aa)
       
 
  0.502
glvI
Hypothetical protein; Cationic channel with similar permeabilities for Na(+) and K(+), that is activated by an increase of the proton concentration on the extracellular side. Displays no permeability for chloride ions. Shows slow kinetics of activation, no desensitization and a single channel conductance of 8 pS. Might contribute to adaptation to external pH change (359 aa)
           
  0.502
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (10%) [HD]