STRINGSTRING
glr1482 protein (Gloeobacter violaceus) - STRING interaction network
"glr1482" - Hypothetical protein in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glr1482Hypothetical protein (476 aa)    
Predicted Functional Partners:
chlL
Protochlorophyllide reductase iron-sulfur ATP-binding protein; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The L component serves as a unique electron donor to the NB-component of the complex, and binds Mg-ATP (275 aa)
 
     
  0.864
acsF
Magnesium-protoporphyrin IX monomethyl ester cyclase; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME) (346 aa)
 
     
  0.861
chlN
Light-independent protochlorophyllide reductase subunit N; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex (469 aa)
 
          0.859
chlB
Light-independent protochlorophyllide reductase subunit B; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex (505 aa)
 
          0.859
chlM
Mg-protoporphyrin IX methyl transferase (240 aa)
 
          0.851
chlG
Bacteriochlorophyll/chlorophyll a synthase (343 aa)
 
     
  0.797
gll3632
Hypothetical protein (649 aa)
   
          0.767
chlP
Geranylgeranyl hydrogenase (398 aa)
 
          0.737
glr3263
Hypothetical protein (148 aa)
   
          0.722
glr0684
Hypothetical protein (315 aa)
 
          0.719
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (13%) [HD]