STRINGSTRING
glr3968 protein (Gloeobacter violaceus) - STRING interaction network
"glr3968" - ATP-dependent protease in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glr3968ATP-dependent protease (212 aa)    
Predicted Functional Partners:
glr2493
Hypothetical protein (275 aa)
       
    0.884
gsr3967
Hypothetical protein (68 aa)
              0.859
glr3971
Glycosyltransferase (357 aa)
              0.819
glr3970
Hypothetical protein (220 aa)
              0.819
glr3969
Alanine dehydrogenase (364 aa)
              0.819
sbcC
Hypothetical protein; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3’->5’ double strand exonuclease that can open hairpins. It also has a 5’ single-strand endonuclease activity (1002 aa)
       
    0.763
gll3769
Hypothetical protein (351 aa)
   
        0.699
ycf23
Hypothetical protein (249 aa)
   
        0.686
gll0664
Hypothetical protein (204 aa)
   
          0.621
ndhN
Hypothetical protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon- concentration (159 aa)
   
        0.570
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (13%) [HD]