STRINGSTRING
nusG protein (Gloeobacter violaceus) - STRING interaction network
"nusG" - Transcription antitermination protein NusG in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nusGTranscription antitermination protein NusG; Participates in transcription elongation, termination and antitermination (205 aa)    
Predicted Functional Partners:
rpoC2
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1262 aa)
 
  0.996
rpoC1
DNA-directed RNA polymerase subunit gamma; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (608 aa)
 
  0.995
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (314 aa)
   
  0.993
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes (104 aa)
 
 
  0.993
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1112 aa)
 
  0.993
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (73 aa)
   
  0.976
rplK
50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors (141 aa)
 
   
  0.971
rpl1
50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release (238 aa)
 
   
  0.965
rps7
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (156 aa)
 
   
  0.937
glr3844
Hypothetical protein (213 aa)
     
    0.913
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (19%) [HD]