STRINGSTRING
hemA protein (Gloeobacter violaceus) - STRING interaction network
"hemA" - glutamyl-tRNA reductase in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hemAglutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl- tRNA(Glu) to glutamate 1-semialdehyde (GSA) (430 aa)    
Predicted Functional Partners:
hemL
Glutamate-1-semialdehyde aminotransferase (432 aa)
 
  0.999
hemC
Porphobilinogen deaminase; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps (328 aa)
   
  0.984
hemD
Uroporphyrinogen III synthase/methyltransferase (508 aa)
 
 
  0.979
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (530 aa)
     
 
  0.978
hemE
Uroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III (347 aa)
 
   
  0.954
hemB
Delta-aminolevulinic acid dehydratase (327 aa)
 
   
  0.938
cobA
uroporphyrin-III C-methyltransferase (246 aa)
 
 
  0.831
hemG
Protoporphyrinogen oxidase (466 aa)
 
   
  0.826
atpF
ATP synthase F0F1 subunit B; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (175 aa)
   
     
  0.764
gll0378
precorrin-6Y methylase (409 aa)
         
  0.759
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (10%) [HD]