STRINGSTRING
efp protein (Gloeobacter violaceus) - STRING interaction network
"efp" - Elongation factor P in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase (187 aa)    
Predicted Functional Partners:
glr1045
Deoxyhypusine synthase-like protein (386 aa)
   
  0.982
cpcF
Phycocyanobilin lyase alpha subunit (193 aa)
     
  0.932
cpcE
Phycocyanobilin lyase alpha subunit (247 aa)
     
  0.932
gll3007
Hypothetical protein (240 aa)
     
  0.932
rps5
30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy (223 aa)
     
 
  0.883
accB
Biotin carboxyl carrier protein of acetyl-CoA carboxylase (157 aa)
   
        0.874
rpl5
50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs (182 aa)
     
   
  0.867
rplP
50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs (148 aa)
   
   
  0.858
rplR
50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance (120 aa)
   
 
  0.855
rpl6
50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center (191 aa)
   
   
  0.851
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (7%) [HD]