STRINGSTRING
gll1288 protein (Gloeobacter violaceus) - STRING interaction network
"gll1288" - Folyl-polyglutamate synthetase in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gll1288Folyl-polyglutamate synthetase (385 aa)    
Predicted Functional Partners:
folP
Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8-dihydropteroate (H2Pte), the immediate precursor of folate derivatives (268 aa)
 
  0.983
folD
Methylenetetrahydrofolate dehydrogenase / methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (290 aa)
 
  0.959
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (426 aa)
   
  0.947
glr2476
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (169 aa)
   
  0.941
glr2647
2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase (356 aa)
 
   
  0.739
valS
valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a "posttransfer" editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA-dependent manner (897 aa)
   
   
  0.704
folE
GTP cyclohydrolase I (214 aa)
 
 
  0.703
gll3548
Ribulose-phosphate 3-epimerase (233 aa)
 
   
  0.670
gsl1287
Hypothetical protein (84 aa)
              0.632
truA
tRNA-pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs (304 aa)
   
   
  0.616
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (7%) [HD]