STRINGSTRING
psbO protein (Gloeobacter violaceus) - STRING interaction network
"psbO" - Photosystem II manganese-stabilizing polypeptide in Gloeobacter violaceus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psbOPhotosystem II manganese-stabilizing polypeptide (258 aa)    
Predicted Functional Partners:
psbB
Photosystem II core light harvesting protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light- driven water-plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation (536 aa)
   
 
 
  0.946
psaF
Photosystem I subunit III; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin with PSI (181 aa)
   
   
  0.944
psaD
Photosystem I reaction centre subunit II; PsaD can form complexes with ferredoxin and ferredoxin- oxidoreductase in photosystem I (PS I) reaction center (144 aa)
   
   
  0.908
psbV2
Cytochrome c550; Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II (166 aa)
   
 
 
  0.905
psbH
Photosystem II reaction center protein H; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation (78 aa)
   
 
  0.899
psaE
Photosystem I reaction center subunit IV; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase (65 aa)
   
   
  0.879
gll1742
Hypothetical protein (202 aa)
   
        0.836
glr1262
Phycobiliprotein linker (824 aa)
   
     
  0.818
gll1980
Cytochrome c6 (114 aa)
   
     
  0.818
glr2806
Phycobiliprotein linker (729 aa)
   
     
  0.818
Your Current Organism:
Gloeobacter violaceus
NCBI taxonomy Id: 251221
Other names: G. violaceus, G. violaceus PCC 7421, Gloeobacter, Gloeobacter violaceus, Gloeobacter violaceus ATCC 29082, Gloeobacter violaceus PCC 7421, Gloeobacter violaceus str. PCC 7421, Gloeobacter violaceus strain PCC 7421, Gloeobacterales, Gloeobacterales Cavalier-Smith 2002, Gloeobacteria, Gloeobacteria Cavalier-Smith 2002
Server load: low (6%) [HD]