STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purBAdenylosuccinate lyase; Evidence code ER2; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (446 aa)    
Predicted Functional Partners:
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase; Evidence code ER2; SAICAR synthetase.
 0.999
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
 
 0.998
Mbur_1928
Bifunctional purine biosynthesis protein purH; Evidence code ER2; AICAR transformylase; Inosinicase; IMP synthetase; ATIC; phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase.
  
 0.998
purF
Amidophosphoribosyltransferase precursor; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
 
 
 0.988
purD
Phosphoribosylamine--glycine ligase; Evidence code ER2; GARS.
  
 
 0.983
purL
Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...]
 
  
 0.981
purE
Phosphoribosylaminoimidazole carboxylase catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
  
  
 0.980
hpt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of IMP that is energically less costly than de novo synthesis. Belongs to the purine/pyrimidine phosphoribosyltransferase family. Archaeal HPRT subfamily.
  
 0.977
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...]
 
  
 0.976
purN
Phosphoribosylglycinamide formyltransferase; Evidence code ER2.
  
 
 0.976
Your Current Organism:
Methanococcoides burtonii
NCBI taxonomy Id: 259564
Other names: M. burtonii DSM 6242, Methanococcoides burtonii DSM 6242, Methanococcoides burtonii str. DSM 6242
Server load: low (32%) [HD]