STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaKHeat shock protein Hsp70; Acts as a chaperone; Belongs to the heat shock protein 70 family. (647 aa)    
Predicted Functional Partners:
dnaJ
Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 0.992
grpE
GrpE protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...]
 
 0.984
htpG
Heat shock protein Hsp90:ATP-binding region, ATPase-like protein; Molecular chaperone. Has ATPase activity.
  
 0.979
AAZ64074.1
DnaJ central region:Heat shock protein DnaJ, N-terminal:Chaperone DnaJ, C-terminal.
 0.978
AAZ63699.1
Heat shock protein DnaJ, N-terminal.
 
 0.964
groS
Chaperonin Cpn10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
 
 
 0.939
groL
Chaperonin Cpn60/TCP-1; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.931
clpB
AAA ATPase, central region:Clp, N terminal; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
 
 
 0.927
AAZ64540.1
Chaperonin Cpn60/TCP-1; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. Belongs to the chaperonin (HSP60) family.
 
 0.879
AAZ60437.1
FeS cluster assembly scaffold IscU; A scaffold on which IscS assembles Fe-S clusters. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters.
 
 
 0.864
Your Current Organism:
Cupriavidus pinatubonensis
NCBI taxonomy Id: 264198
Other names: C. pinatubonensis JMP134, Cupriavidus necator JMP134, Cupriavidus pinatubonensis JMP134, Ralstonia eutropha JMP134, Ralstonia eutropha str. JMP134, Ralstonia eutropha strain JMP134, Ralstonia sp. JMP134, Wautersia eutropha JMP134
Server load: high (82%) [HD]