STRINGSTRING
mutL protein (Methylobacillus flagellatus) - STRING interaction network
"mutL" - DNA mismatch repair protein MutL in Methylobacillus flagellatus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mutLDNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (613 aa)    
Predicted Functional Partners:
mutS1
DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (884 aa)
 
  0.999
Mfla_0834
DNA mismatch repair protein MutS (884 aa)
 
  0.999
Mfla_0358
DNA polymerase I (910 aa)
   
  0.988
Mfla_0002
DNA polymerase III, beta subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (367 aa)
     
  0.965
miaA
tRNA delta(2)-isopentenylpyrophosphate transferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A) (315 aa)
 
     
  0.963
recA
Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (344 aa)
   
  0.900
rep
ATP-dependent DNA helicase Rep; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3’ to 5’ direction (690 aa)
 
 
  0.872
Mfla_0363
ATP-dependent DNA helicase UvrD (731 aa)
   
 
  0.855
Mfla_1572
DNA polymerase III, tau subunit (572 aa)
   
 
  0.788
dnaK
Chaperone DnaK; Acts as a chaperone (640 aa)
   
 
  0.782
Your Current Organism:
Methylobacillus flagellatus
NCBI taxonomy Id: 265072
Other names: M. flagellatus, M. flagellatus KT, Methylobacillus, Methylobacillus flagellatus, Methylobacillus flagellatus KT, Methylobacillus flagellatus str. KT, Methylobacillus flagellatus strain KT
Server load: low (9%) [HD]