STRINGSTRING
recR protein (Methylobacillus flagellatus) - STRING interaction network
"recR" - Recombination protein RecR in Methylobacillus flagellatus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recRRecombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO (199 aa)    
Predicted Functional Partners:
Mfla_1573
Hypothetical protein; Binds to DNA and alters its conformation. May be involved in regulation of gene expression, nucleoid organization and DNA protection (108 aa)
   
  0.980
recO
DNA repair protein RecO; Involved in DNA repair and RecF pathway recombination (244 aa)
 
 
  0.959
Mfla_0866
DNA repair protein RecO (244 aa)
 
 
  0.959
Mfla_1572
DNA polymerase III, tau subunit (572 aa)
   
   
  0.920
Mfla_0775
DNA repair protein RecN; May be involved in recombinational repair of damaged DNA (552 aa)
   
     
  0.795
recG
ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (686 aa)
     
   
  0.770
recA
Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (344 aa)
   
 
 
  0.699
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (679 aa)
   
 
  0.669
rep
ATP-dependent DNA helicase Rep; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3’ to 5’ direction (690 aa)
 
 
  0.666
Mfla_1553
DNA polymerase III, epsilon subunit (462 aa)
   
 
  0.649
Your Current Organism:
Methylobacillus flagellatus
NCBI taxonomy Id: 265072
Other names: M. flagellatus, M. flagellatus KT, Methylobacillus, Methylobacillus flagellatus, Methylobacillus flagellatus KT, Methylobacillus flagellatus str. KT, Methylobacillus flagellatus strain KT
Server load: low (11%) [HD]