STRINGSTRING
gltX protein (Methylobacillus flagellatus) - STRING interaction network
"gltX" - glutamyl-tRNA synthetase in Methylobacillus flagellatus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (467 aa)    
Predicted Functional Partners:
metG1
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (692 aa)
   
  0.999
Mfla_0921
methionyl-tRNA synthetase (692 aa)
   
  0.999
gatB
aspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp- tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln) (477 aa)
   
  0.977
gatA
aspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln) (490 aa)
   
  0.976
ileS
isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (934 aa)
 
  0.959
pheT
phenylalanyl-tRNA synthetase beta subunit (784 aa)
   
  0.959
Mfla_2734
Glutamate synthase (NADPH) (1836 aa)
     
   
  0.939
hemA
glutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl- tRNA(Glu) to glutamate 1-semialdehyde (GSA) (414 aa)
     
 
  0.939
argS
arginyl-tRNA synthetase (556 aa)
   
  0.930
gatC
aspartyl/glutamyl-tRNA amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp- tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln) (95 aa)
         
    0.900
Your Current Organism:
Methylobacillus flagellatus
NCBI taxonomy Id: 265072
Other names: M. flagellatus, M. flagellatus KT, Methylobacillus, Methylobacillus flagellatus, Methylobacillus flagellatus KT, Methylobacillus flagellatus str. KT, Methylobacillus flagellatus strain KT
Server load: low (11%) [HD]