STRINGSTRING
ruvB protein (Methylobacillus flagellatus) - STRING interaction network
"ruvB" - Holliday junction DNA helicase RuvB in Methylobacillus flagellatus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ruvBHolliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (345 aa)    
Predicted Functional Partners:
ruvA
Holliday junction DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (194 aa)
 
 
  0.999
ruvC
Holliday junction resolvase; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5’-terminal phosphate and a 3’-terminal hydroxyl group (180 aa)
 
   
  0.946
Mfla_2343
4-hydroxybenzoyl-CoA thioesterase (136 aa)
   
        0.885
Mfla_2342
MotA/TolQ/ExbB proton channel (224 aa)
              0.855
Mfla_2341
Biopolymer transport protein ExbD/TolR (128 aa)
   
        0.851
Mfla_2340
Hypothetical protein (276 aa)
              0.848
queA
S-adenosylmethionine; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA) (344 aa)
 
 
  0.847
recG
ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (686 aa)
 
   
  0.795
Mfla_2065
Exonuclease RecJ (564 aa)
 
   
  0.780
mutS1
DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (884 aa)
 
   
  0.752
Your Current Organism:
Methylobacillus flagellatus
NCBI taxonomy Id: 265072
Other names: M. flagellatus, M. flagellatus KT, Methylobacillus, Methylobacillus flagellatus, Methylobacillus flagellatus KT, Methylobacillus flagellatus str. KT, Methylobacillus flagellatus strain KT
Server load: low (7%) [HD]