STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (295 aa)    
Predicted Functional Partners:
glyA
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.998
purU
Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4).
 
 0.985
purH
TIGRFAM: phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; PFAM: MGS domain protein; AICARFT/IMPCHase bienzyme formylation region; KEGG: aau:AAur_1198 bifunctional purine biosynthesis protein PurH.
 
 
 0.980
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
 
 
 0.978
fmt
methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family.
 
 
 0.969
gcvT
Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine.
  
 
 0.959
Krad_0936
PFAM: methylenetetrahydrofolate reductase; KEGG: art:Arth_2367 deleted entry; Belongs to the methylenetetrahydrofolate reductase family.
    
 0.936
Krad_1170
PFAM: methylenetetrahydrofolate reductase; KEGG: fal:FRAAL2163 5,10-methylenetetrahydrofolate reductase; Belongs to the methylenetetrahydrofolate reductase family.
    
 0.936
purD
TIGRFAM: phosphoribosylamine--glycine ligase; PFAM: phosphoribosylglycinamide synthetase; KEGG: sma:SAV4149 putative phosphoribosylglycinamide synthetase; Belongs to the GARS family.
 
  
 0.936
Krad_3690
PFAM: 5-formyltetrahydrofolate cyclo-ligase; KEGG: fal:FRAAL6398 putative ligase (partial match); Belongs to the 5-formyltetrahydrofolate cyclo-ligase family.
    
 0.935
Your Current Organism:
Kineococcus radiotolerans
NCBI taxonomy Id: 266940
Other names: K. radiotolerans SRS30216 = ATCC BAA-149, Kineococcus radiotolerans ATCC BAA-149, Kineococcus radiotolerans ATCC BAA-149 = SRS30216, Kineococcus radiotolerans SRS30216, Kineococcus radiotolerans SRS30216 = ATCC BAA-149, Kineococcus-like str. SRS30216
Server load: low (38%) [HD]