STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
folD5,10-methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (287 aa)    
Predicted Functional Partners:
AAZ69551.1
IMP cyclohydrolase.
 
 0.997
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. Appears to be specific for THF as the pteridine substrate, since the use of tetrahydromethanopterin (H4MPT) is much less efficient. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. Thus, is able to catalyze the cleavage of L-allo-threonine and L-threo- beta-phenylserine; Belongs to the SHMT family.
 
 0.997
AAZ70258.1
Formyltetrahydrofolate-dependent phosphoribosylglycinamide formyltransferase.
 
 0.969
AAZ71241.1
Formyltetrahydrofolate-dependent phosphoribosylglycinamide formyltransferase.
 
 0.969
thyA
Thymidylate synthase; May catalyze the biosynthesis of dTMP using an unknown cosubstrate; Belongs to the thymidylate synthase family. Archaeal-type ThyA subfamily.
  
 
 0.965
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
  
  
 0.884
purL
Phosphoribosylformylglycinamidine synthase subunit II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to [...]
  
 
 0.849
purD
Phosphoribosylamine--glycine ligase.
  
 
 0.806
mch
Methenyltetrahydromethanopterin cyclohydrolase; Catalyzes the reversible interconversion of 5-formyl-H(4)MPT to methenyl-H(4)MPT(+); Belongs to the MCH family.
      
 0.791
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase; Belongs to the SAICAR synthetase family.
  
 
 0.760
Your Current Organism:
Methanosarcina barkeri Fusaro
NCBI taxonomy Id: 269797
Other names: M. barkeri str. Fusaro, Methanosarcina barkeri DSM 804, Methanosarcina barkeri str. Fusaro, Methanosarcina barkeri strain Fusaro
Server load: medium (62%) [HD]