STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RP746ENDONUCLEASE III (nth); DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. (212 aa)    
Predicted Functional Partners:
RP260
EXODEOXYRIBONUCLEASE III (xthA1).
  
 0.938
RP676
EXODEOXYRIBONUCLEASE III (xthA2).
  
 0.938
RP776
DNA POLYMERASE I (polA); In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity.
  
 
 0.889
RP880
DNA MISMATCH REPAIR PROTEIN MUTL (mutL); This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (By similarity).
   
 
 0.654
RP598
TRANSCRIPTION-REPAIR COUPLING FACTOR (mfd); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the N-terminal section; belongs to the UvrB family.
 
   
 0.588
RP745
GLUTAREDOXIN-LIKE PROTEIN GRLA (grxC2); Belongs to the glutaredoxin family. Monothiol subfamily.
       0.560
RP572
EXCINUCLEASE ABC SUBUNIT C (uvrC); The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
     
 0.535
RP761
RECA PROTEIN (recA); Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
   
 
 0.513
RP203
EXCINUCLEASE ABC SUBUNIT B (uvrB); The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits diss [...]
     
 0.484
RP731
Unknown; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family.
  
    0.461
Your Current Organism:
Rickettsia prowazekii
NCBI taxonomy Id: 272947
Other names: R. prowazekii str. Madrid E, Rickettsia prowazekii str. Madrid E, Rickettsia prowazekii strain Madrid E
Server load: high (88%) [HD]