STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvPAGlycine dehydrogenase (decarboxylating) alpha subunit; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein. (452 aa)    
Predicted Functional Partners:
Saro_1850
Aminomethyltransferase.
 
 0.999
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
 0.999
Saro_1853
Glycine dehydrogenase (decarboxylating) beta subunit.
 0.999
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 
 0.966
Saro_1178
Dihydrolipoamide dehydrogenase.
 
 
 0.937
Saro_1945
Dihydrolipoamide dehydrogenase.
 
 
 0.935
Saro_3267
L-threonine aldolase.
    
 0.919
Saro_1797
5-aminolevulinate synthase.
  
 
 0.909
Saro_3111
Serine palmitoyltransferase.
  
 
 0.909
Saro_2939
FAD dependent oxidoreductase.
   
 
 0.903
Your Current Organism:
Novosphingobium aromaticivorans
NCBI taxonomy Id: 279238
Other names: N. aromaticivorans DSM 12444, Novosphingobium aromaticivorans DSM 12444, Novosphingobium aromaticivorans str. DSM 12444, Novosphingobium aromaticivorans strain DSM 12444
Server load: medium (74%) [HD]