STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SCN4ASodium channel protein; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. (1899 aa)    
Predicted Functional Partners:
UNC79
Unc-79 homolog, NALCN channel complex subunit.
   
 0.990
SCN1B
Sodium voltage-gated channel beta subunit 1.
    
 0.981
SCN3B
Sodium voltage-gated channel beta subunit 3.
   
 0.807
NAV1
Neuron navigator 1.
      
 0.739
SCN4B
Sodium voltage-gated channel beta subunit 4.
    
 0.679
SCN2B
Sodium voltage-gated channel beta subunit 2.
   
 0.665
SCN8A
Sodium channel protein; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
  
 
0.662
CACNA1G
Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...]
   
0.648
CACNA1I
Calcium voltage-gated channel subunit alpha1 I.
   
0.648
LOC100552814
Ion_trans domain-containing protein.
   
0.648
Your Current Organism:
Anolis carolinensis
NCBI taxonomy Id: 28377
Other names: A. carolinensis, Carolina anole, UCMZ 53793, green anole
Server load: medium (42%) [HD]