STRINGSTRING
bioD protein (Idiomarina loihiensis) - STRING interaction network
"bioD" - Dethiobiotin synthetase in Idiomarina loihiensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bioDDethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8-diaminopelargonic acid (DAPA) to form an ureido ring (222 aa)    
Predicted Functional Partners:
bioA
Adenosylmethionine-8-amino-7-oxononanoate aminotransferase; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor (431 aa)
 
  0.999
bioB
Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical- based mechanism (345 aa)
 
 
  0.999
bioC
Biotin synthesis protein (255 aa)
 
 
  0.998
bioF
7-keto-8-aminopelargonate synthetase (372 aa)
 
   
  0.992
bioH
Alpha/beta hydrolase; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters (255 aa)
 
   
  0.936
kbl
2-amino-3-ketobutyrate CoA ligase; Catalyzes the cleavage of 2-amino-3-ketobutyrate to glycine and acetyl-CoA (396 aa)
 
   
  0.933
birA
Biotin--protein ligase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5’-adenylate (BirA-bio- 5’-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon (331 aa)
   
 
  0.853
argD
Ornithine/acetylornithine aminotransferase (405 aa)
   
  0.754
IL2509
rRNA (guanine-N1-)-methyltransferase (278 aa)
   
 
  0.717
IL1696
SAM-dependent methyltransferase (256 aa)
   
 
  0.717
Your Current Organism:
Idiomarina loihiensis
NCBI taxonomy Id: 283942
Other names: I. loihiensis, I. loihiensis L2TR, Idiomarina loihiensis, Idiomarina loihiensis Donachie et al. 2003, Idiomarina loihiensis L2TR, Idiomarina loihiensis str. L2TR, Idiomarina loihiensis strain L2TR
Server load: low (17%) [HD]