STRINGSTRING
MIA40 protein (Candida glabrata) - STRING interaction network
"MIA40" - Hypothetical protein in Candida glabrata
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MIA40Hypothetical protein; Required for the import and folding of small cysteine- containing proteins (small Tim) in the mitochondrial intermembrane space (IMS). Forms a redox cycle with ERV1 that involves a disulfide relay system. Precursor proteins to be imported into the IMS are translocated in their reduced form into the mitochondria. The oxidized form of MIA40 forms a transient intermolecular disulfide bridge with the reduced precursor protein, resulting in oxidation of the precursor protein that now contains an intramolecular disulfide bond and is able to undergo folding in the IMS (B [...] (404 aa)    
Predicted Functional Partners:
XP_002999541.1
Hypothetical protein (93 aa)
     
  0.873
XP_447170.1
Hypothetical protein (101 aa)
     
  0.837
TIM9
Hypothetical protein; Mitochondrial intermembrane chaperone that participates in the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space (By similarity) (87 aa)
     
  0.793
XP_446402.1
Hypothetical protein (174 aa)
       
  0.782
TIM8
Hypothetical protein; Mitochondrial intermembrane chaperone that participates in the import and insertion of some multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. The TIM8-TIM13 complex is non essential and only mediates the import of few proteins, while the pre [...] (87 aa)
     
  0.780
COX19
Hypothetical protein; Required for the assembly of mitochondrial cytochrome c oxidase (86 aa)
       
  0.768
TIM13
Hypothetical protein; Mitochondrial intermembrane chaperone that participates in the import and insertion of some multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. The TIM8-TIM13 complex is non essential and only mediates the import of few proteins, while the pre [...] (95 aa)
     
  0.768
XP_448460.1
Hypothetical protein (207 aa)
       
  0.736
XP_445654.1
Hypothetical protein (55 aa)
     
  0.715
TIM22
Hypothetical protein; Essential core component of the TIM22 complex, a complex that mediates the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane. In the TIM22 complex, it constitutes the voltage-activated and signal-gated channel. Forms a twin-pore translocase that uses the membrane potential as external driving force in 2 voltage-dependent steps (By similarity) (193 aa)
     
 
  0.680
Your Current Organism:
Candida glabrata
NCBI taxonomy Id: 284593
Other names: C. glabrata, C. glabrata CBS 138, Candida glabrata, Candida glabrata ATCC 2001, Candida glabrata ATCC2001, Candida glabrata CBS 138, Candida glabrata CBS138, Nakaseomyces, Torulopsis glabrata, m. Nakaseomyces, mitosporic Nakaseomyces
Server load: low (6%) [HD]