STRINGSTRING
ATG32 protein (Candida glabrata) - STRING interaction network
"ATG32" - Hypothetical protein in Candida glabrata
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATG32Hypothetical protein; Mitophagy-specific receptor that recruits the autophagic machinery to mitochondria and regulates selective degradation of mitochondria. Mitophagy contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Recruits ATG11 to the surface of mitochondria. Promotes also autophagy-dependent peroxisome degradation (By similarity) (492 aa)    
Predicted Functional Partners:
ATG8
Hypothetical protein; Ubiquitin-like modifier involved in cytoplasm to vacuole transport (Cvt) vesicles and autophagosomes formation. With ATG4, mediates the delivery of the vesicles and autophagosomes to the vacuole via the microtubule cytoskeleton. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Participates also in membrane fusion events that [...] (118 aa)
       
  0.921
XP_447476.1
Hypothetical protein (373 aa)
       
    0.828
XP_444784.1
Hypothetical protein; Plays a complex role in regulating the basal catalytic activity of the alpha subunit (266 aa)
       
    0.828
CKA2
Hypothetical protein (339 aa)
       
    0.819
XP_447295.1
Hypothetical protein; Plays a complex role in regulating the basal catalytic activity of the alpha subunit (259 aa)
       
    0.818
XP_448448.1
Hypothetical protein (745 aa)
       
    0.817
ATG11
Hypothetical protein; Involved in cytoplasm to vacuole transport (Cvt), pexophagy, mitophagy and nucleophagy. Recruits mitochondria for their selective degradation via autophagy (mitophagy) during starvation. Works as scaffold proteins that recruit ATG proteins to the pre-autophagosome (PAS), the site of vesicle/autophagosome formation. Required for the Cvt vesicles completion (By similarity). Contributes through its regulation of pexophagy to survival during engulfment by host phagocytic cells during infection. Through its function in autophagy, acts as an important virulence factor t [...] (1110 aa)
       
 
  0.661
ATG1
Hypothetical protein; Serine/threonine protein kinase involved in the cytoplasm to vacuole transport (Cvt) and found to be essential in autophagy, where it is required for the formation of autophagosomes. Involved in the clearance of protein aggregates which cannot be efficiently cleared by the proteasome. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS prod [...] (942 aa)
       
 
  0.659
ATG5
Hypothetical protein; Involved in cytoplasm to vacuole transport (Cvt) and autophagic vesicle formation. Autophagy is essential for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Required for selective autophagic degradation of the nucleus (nucleophagy). Also required for mitophagy, which eliminates defective or superfluous mitochondria in order to fulfill cellular energy requirements and prevent excess ROS production. Conjugation with ATG12, through a ubiquitin-like conjugating system involving ATG7 as an E1-like activating enzyme and ATG10 as an E2- [...] (270 aa)
           
  0.467
ATG7
Hypothetical protein; E1-like activating enzyme involved in the 2 ubiquitin- like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 and ATG8 for its conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Autophagy is essential for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regula [...] (623 aa)
           
  0.465
Your Current Organism:
Candida glabrata
NCBI taxonomy Id: 284593
Other names: C. glabrata, C. glabrata CBS 138, Candida glabrata, Candida glabrata ATCC 2001, Candida glabrata ATCC2001, Candida glabrata CBS 138, Candida glabrata CBS138, Nakaseomyces, Torulopsis glabrata, m. Nakaseomyces, mitosporic Nakaseomyces
Server load: low (6%) [HD]