STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
mtnBMethylthioribulose-1-phosphate dehydratase; Catalyzes the dehydration of methylthioribulose-1- phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1- phosphate (DK-MTP-1-P) (205 aa)    
Predicted Functional Partners:
Enolase-phosphatase E1; Bifunctional enzyme that catalyzes the enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK-MTPenyl-1-P), which is then dephosphorylated to form the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK- MTPene); Belongs to the HAD-like hydrolase superfamily. MasA/MtnC family
Methylthioribose-1-phosphate isomerase; Catalyzes the interconversion of methylthioribose-1- phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1- P)
Acireductone dioxygenase; Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway
Probable S-methyl-5'-thioinosine phosphorylase; Catalyzes the reversible phosphorylation of S-methyl-5'- thioinosine (MTI) to hypoxanthine and 5-methylthioribose-1- phosphate. Involved in the breakdown of S-methyl-5'-thioadenosine (MTA), a major by-product of polyamine biosynthesis. Catabolism of (MTA) occurs via deamination to MTI and phosphorolysis to hypoxanthine
annotation not available
aroC: chorismate synthase
S-adenosylmethionine decarboxylase proenzyme; Catalyzes the decarboxylation of S-adenosylmethionine to S-adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine; Belongs to the prokaryotic AdoMetDC family. Type 2 subfamily
Polyamine aminopropyltransferase; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy- AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine
annotation not available
Polyamine aminopropyltransferase; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy- AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (17%) [HD]