STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dsbB1Required for disulfide bond formation in some periplasmic proteins. Acts by oxidizing the DsbA protein (By similarity). (163 aa)    
Predicted Functional Partners:
dsbA
Involved in disulfide-bond formation. Acts by transferring its disulfide bond to other proteins (By similarity)
 
 
 
 0.999
dsbC
Required for disulfide bond formation in some periplasmic proteins. Acts by transferring its disulfide bond to other proteins and is reduced in the process
   
 
 0.957
dsbD1
Required to facilitate the formation of correct disulfide bonds in some periplasmic proteins and for the assembly of the periplasmic c-type cytochromes. Acts by transferring electrons from cytoplasmic thioredoxin to the periplasm. This transfer involves a cascade of disulfide bond formation and reduction steps.
   
  
 0.929
dsbG
Involved in disulfide bond formation. Functions probably as a disulfide isomerase with a narrower substrate specificity than DsbC. DsbG is maintained in a reduced state by DsbD (By similarity).
   
 
 0.926
dsbE
Involved in disulfide bond formation. Catalyzes a late, reductive step in the assembly of periplasmic c-type cytochromes, probably the reduction of disulfide bonds of the apocytochrome c to allow covalent linkage with the heme. Possible subunit of a heme lyase (By similarity)
     
 0.925
dsbD2
Required to facilitate the formation of correct disulfide bonds in some periplasmic proteins and for the assembly of the periplasmic c-type cytochromes. Acts by transferring electrons from cytoplasmic thioredoxin to the periplasm. This transfer involves a cascade of disulfide bond formation and reduction steps.
   
  
 0.925
DR97_1828
annotation not available
   
 
 0.897
ccmH
Required for the biogenesis of c-type cytochromes. Possible subunit of a heme lyase (By similarity)
      
 0.862
DR97_1511
annotation not available
      
 0.852
HemY
annotation not available
 
     0.733
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (3%) [HD]