close STRING Database User Survey
Please help us improve further — take a moment to fill our brief user survey.
 
STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
sucDSuccinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. Can also generate UTP or CTP, although it preferentially synthesizes ATP and/or GTP (295 aa)    
Predicted Functional Partners:
sucC
Succinyl-coa ligase [adp-forming] subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. Can also generate UTP or CTP, although it preferentially synthesizes ATP and/or GTP
 0.999
sucB
Dihydrolipoyllysine-residue succinyltransferase, e2 component of oxoglutarate dehydrogenase complex; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2)
 0.999
sucA
2oxo_dh_E1: oxoglutarate dehydrogenase (succinyl-transferring), E1 component
 
 0.999
DR97_2331
annotation not available
  
 0.998
pauA
annotation not available
  
0.998
sdhB
dhsB: succinate dehydrogenase and fumarate reductase iron-sulfur family protein
 
 0.997
sdhA
Succinate dehydrogenase / fumarate reductase, flavoprotein subunit; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily
 
 0.996
nuoD
Bifunctional nadh:ubiquinone oxidoreductase subunit c/d; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
  
 
 0.996
sdhC
Succinate dehydrogenase / fumarate reductase, cytochrome b subunit; succ_dehyd_cytB: succinate dehydrogenase, cytochrome b556 subunit
  
 
 0.995
sdhD
Succinate dehydrogenase / fumarate reductase, membrane anchor subunit; Membrane-anchoring subunit of succinate dehydrogenase (SDH)
  
 
 0.989
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (10%) [HD]