STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
phzG1Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP) (214 aa)    
Predicted Functional Partners:
phzF1
Isomerase that catalyzes the condensation of two molecules of trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) into the phenazine ring system. The final product is not yet known.
  
  
 0.988
phzB1
Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzB1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth
  
 
 0.988
phzA1
Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzA1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth
  
 
 0.986
phzA2
Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule having important roles in virulence, competition and biological control. PhzA2 (operon phzA2B2C2E2F2G2) has a role in the biosynthesis of the phenazine during both planktonic growth and biofilm development, and in host infection during biofilm development
  
 
 0.968
phzC1
annotation not available
     
 0.962
phzB2
Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule having important roles in virulence, competition and biological control. PhzB2 (operon phzA2B2C2E2F2G2) has a role in the biosynthesis of the phenazine during both planktonic growth and biofilm development, and in host infection during biofilm development
  
 
 0.949
pdxJ
Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino- 2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate.
  
  
 0.943
phzS
Involved in the biosynthesis of pyocyanine, a blue-pigmented phenazine derivative, which plays a role in virulence. Catalyzes the oxidative decarboxylation of 5-methylphenazine-1-carboxylate (5-methyl- PCA) to pyocyanine. Can also act on phenazine-1-carboxylate (PCA), converting it into 1-hydroxyphenazine (1-HP). However, PCA is a poor substrate
  
  
 0.941
DR97_5944
annotation not available
  
  
 0.920
pdxY
Pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP). Catalyzes the phosphorylation of pyridoxal to PLP.
  
 
 0.916
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (2%) [HD]