STRINGSTRING
minD_2 protein (Pseudomonas aeruginosa) - STRING interaction network
"minD_2" - Iron-sulfur cluster carrier protein in Pseudomonas aeruginosa
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
minD_2Iron-sulfur cluster carrier protein; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP (364 aa)    
Predicted Functional Partners:
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily (677 aa)
 
 
  0.838
DR97_2410
Uncharacterized protein (123 aa)
 
        0.757
dcd
dCTP_deam- deoxycytidine triphosphate deaminase; Belongs to the dCTP deaminase family (188 aa)
 
        0.725
pslA
Putative glycosyl transferase; wcaJ_sugtrans- undecaprenyl-phosphate glucose phosphotransferase (478 aa)
   
   
  0.716
bcp
annotation not available (157 aa)
   
   
  0.684
add
Adenine deaminase; Catalyzes the hydrolytic deamination of adenine to hypoxanthine. Plays an important role in the purine salvage pathway and in nitrogen catabolism (316 aa)
 
   
  0.684
pslD
annotation not available (256 aa)
   
 
  0.660
nth
Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N- glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3’ to the AP site by a beta-elimination, leaving a 3’-terminal unsaturated sugar and a product with a terminal 5’-phosphate (212 aa)
 
     
  0.634
nuoD
NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family (593 aa)
         
  0.593
moeB
annotation not available (252 aa)
 
 
  0.592
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (18%) [HD]