STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mupPN-acetyl-d-muramate 6-phosphate phosphatase; Specifically catalyzes the dephosphorylation of N- acetylmuramate 6-phosphate (MurNAc-6P) to MurNac (By similarity). Is involved in peptidoglycan recycling as part of a cell wall recycling pathway that bypasses de novo biosynthesis of the peptidoglycan precursor UDP-MurNAc . Plays a role in intrinsic resistance to fosfomycin, which targets the de novo synthesis of UDP- MurNAc (223 aa)    
Predicted Functional Partners:
ubiG
2-polyprenyl-6-hydroxyphenyl methylase / 3-demethylubiquinone-9 3-methyltransferase; O-methyltransferase that catalyzes the 2 O-methylation steps in the ubiquinone biosynthetic pathway
 
  
 0.973
amgK
Phosphotransferase enzyme family protein; Sugar kinase that catalyzes the ATP-dependent phosphorylation of N-acetylmuramate (MurNAc) and N-acetylglucosamine (GlcNAc) at its C1 hydroxyl group, leading to MurNAc alpha-1P and GlcNAc alpha-1P, respectively (By similarity). Is involved in peptidoglycan recycling as part of a cell wall recycling pathway that bypasses de novo biosynthesis of the peptidoglycan precursor UDP-MurNAc . Plays a role in intrinsic resistance to fosfomycin, which targets the de novo synthesis of UDP-MurNAc
  
 
 0.950
YciK
annotation not available
  
    0.874
DR97_4766
5-methylthioadenosine/S-adenosylhomocysteinedeaminase; 465; amidohydrolase family Protein OLEI01672_1_465
 
    0.780
GpD
annotation not available
      
 0.733
adhC
S-(hydroxymethyl)glutathione dehydrogenase/class iii alcohol dehydrogenase; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily
     
 0.713
hisF
Imidazoleglycerol phosphate synthase, cyclase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit (By similarity)
     
 0.682
pvcA
annotation not available
      
 0.671
pheA
Chorismate mutase / prephenate dehydratase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate
 
    0.602
pbpG
Serine-type d-ala-d-ala endopeptidase (penicillin-binding protein 7); Cell wall formation
   
  
 0.583
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (14%) [HD]