STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
rlmLRibosomal RNA large subunit methyltransferase K/L; Specifically methylates the guanine in position 2445 (m2G2445) and the guanine in position 2069 (m7G2069) of 23S rRNA; Belongs to the methyltransferase superfamily. RlmKL family (725 aa)    
Predicted Functional Partners:
Ribosomal RNA small subunit methyltransferase C; Specifically methylates the guanine in position 1207 of 16S rRNA in the 30S particle; Belongs to the methyltransferase superfamily. RsmC family
Ribosomal RNA large subunit methyltransferase G; Specifically methylates the guanine in position 1835 (m2G1835) of 23S rRNA
Ribosomal RNA small subunit methyltransferase D; Specifically methylates the guanine in position 966 of 16S rRNA in the assembled 30S particle
23S rRNA (uracil(1939)-C(5))-methyltransferase RlmD; Catalyzes the formation of 5-methyl-uridine at position 1939 (m5U1939) in 23S rRNA
tRNA sulfurtransferase; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS
Bifunctional protein HldE; Catalyzes the ADP transfer from ATP to D-glycero-beta-D- manno-heptose 1-phosphate, yielding ADP-D-glycero-beta-D-manno- heptose; In the N-terminal section; belongs to the carbohydrate kinase PfkB family
tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein MnmC; Catalyzes the last two steps in the biosynthesis of 5- methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position (U34) in tRNA. Catalyzes the FAD-dependent demodification of cmnm(5)s(2)U34 to nm(5)s(2)U34, followed by the transfer of a methyl group from S-adenosyl-L-methionine to nm(5)s(2)U34, to form mnm(5)s(2)U34; In the C-terminal section; belongs to the DAO family
23S rRNA (guanosine-2'-O-)-methyltransferase RlmB; Specifically methylates the ribose of guanosine 2251 in 23S rRNA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3- phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate
ccmA: heme ABC exporter, ATP-binding protein CcmA
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (6%) [HD]