STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
snr1annotation not available (467 aa)    
Predicted Functional Partners:
Napd protein of periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export
Cytochrome c-type protein; napC_nirT: periplasmic nitrate (or nitrite) reductase c-type cytochrome, NapC/NirT family protein
Ferredoxin-type protein napf; Could be involved in the maturation of NapA, the catalytic subunit of the periplasmic nitrate reductase, before its export into the periplasm
Disulfide isomerase/thiol-disulfide oxidase; Involved in disulfide bond formation. Functions probably as a disulfide isomerase with a narrower substrate specificity than DsbC. DsbG is maintained in a reduced state by DsbD (By similarity)
narJ: nitrate reductase molybdenum cofactor assembly chaperone
Cytochrome o ubiquinol oxidase subunit ii; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron (By similarity)
Methyl-accepting chemotaxis protein; Essential for biofilm dispersion by sensing environmental cues. May be involved in sensing and transducing signals within cells, resulting in the modulation of c-di-GMP levels, swimming motility and adhesiveness of the bacterial cell surface
Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Is 1.5 times more efficient at aminoacylating E.coli tRNA(Asp) over tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn)
narI: respiratory nitrate reductase, gamma subunit
annotation not available
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (8%) [HD]