• Version:
  • 11.0 (preview - - version 10.5 still available here)
STRINGSTRING
DR97_5628 protein (Pseudomonas aeruginosa) - STRING interaction network
"DR97_5628" - annotation not available in Pseudomonas aeruginosa
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DR97_5628annotation not available (573 aa)    
Predicted Functional Partners:
DR97_5629
Uncharacterized protein (1221 aa)
 
  0.999
DR97_2678
annotation not available (855 aa)
 
 
  0.682
DR97_5627
annotation not available (210 aa)
 
          0.619
DR97_1428
Uncharacterized protein; adhes_NPXG- filamentous hemagglutinin family N-terminal domain protein (4180 aa)
   
 
  0.611
DR97_5973
annotation not available (1825 aa)
   
 
  0.593
DR97_5630
annotation not available (211 aa)
              0.542
glnE
Bifunctional glutamine synthetase adenylyltransferase/adenylyl-removing enzyme; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory regi [...] (982 aa)
   
        0.497
recC
RecBCD enzyme subunit RecC; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3’ direction. Cuts ssDNA a few nucleotides 3’ to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3’-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holo [...] (1171 aa)
   
        0.496
lnt
Apolipoprotein N-acyltransferase; Transfers the fatty acyl group on membrane lipoproteins (511 aa)
   
 
  0.492
recB
RecBCD enzyme subunit RecB; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3’ direction. Cuts ssDNA a few nucleotides 3’ to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3’-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holo [...] (1245 aa)
 
        0.480
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (14%) [HD]